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N is a small power of two times an odd number and, fur- 
ther, there is also an advantage if that odd number is a 
product of several different prime numbers rather than a 
high power of a small one. A library of efficient FVI" rou- 
tines for a wide range of values of N is being developed 
(An, Lu, Prince & Tolimieri, 1992). 
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Abstract  

We extend our study of the condit ional  probabi l i ty  
density funct ion (c.p.d.f.) of  the three-phase invariant  
for the space group P1 [Shmueli ,  Rabinovich & Weiss 
(1989). Acta Crysr A45, 361-367] to the monocl in ic  
space group P2. A detailed derivation of the charac- 
teristic funct ion (and hence Fourier coefficients) of  
the latter c.p.d.f, is presented in this paper,  as well 
as some simplif icat ions of the resulting expressions.  

Introduct ion 

The first exact study of  the condit ional  probabi l i ty  
density funct ion (p.d.f.) of  a three-phase invariant  
was presented recently (Shmueli ,  Rabinovich & 
Weiss, 1989a) in terms of a Fourier representat ion 
of the relevant hexavariate  p.d.f. The resulting series 
was then adapted to computer  evaluation by suitably 
part i t ioning the sums and taking their symmetry into 
account (Shmueli ,  Rabinovich  & Weiss, 1989b). 
Although the formal ism appeared to be extremely 
complicated it was seen that by properly exploit ing 
the symmetry inherent  in the Fourier summat ions  it 
is possible to reduce the comput ing efforts sufficiently 
that convent ional  mainf rames  and workstations are 
able to cope with the relevant computat ions.  The 

0108-7673/92/040418-06506.00 

study cited earlier contains a derivation of the general 
form of the condit ional  p.d.f, as well as its evaluat ion 
for the space group P 1 -  the simplest  and,  so far, 
the only example  for which noncentrosymmetr ic  
direct-methods formalisms have been extensively 
developed. Our earlier study shows that the general 
form of the condit ional  p.d.f, is given by a summat ion  
of the form 

E C,,Z,, (1) 
tl 

where u is a vector of  the (six) summat ion  indices 
and the Ca are coefficients depending  on the composi-  
tion and symmetry of the crystal. The funct ion Z,, 
depends on the magni tudes  of the normal ized struc- 
ture factors and is the same for all the symmetries  
and composit ions.  While the conditional p.d.f, for 
the three-phase invariant  in P1, in either its approxi-  
mate (Cochran,  1955) or exact (Shmueli  et al., 1989a) 
form, may lead to satisfactory practical algorithms, 
we believe that it is also desirable to examine  the 
effect of  symmetry on this important  statistic. To do 
this, we need only calculate C, in (1). As pointed 
out, e.g. by Shmueli  & Weiss (1985), these Fourier  
coefficients are just the values of the characteristic 
function C(w~,  w 2 , . . . ,  W k , . . . )  of the p.d.f, at the 
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points ('Ok---~ "/J'aUk, where a is the reciprocal of the 
maximum value of the magnitude of the normalized 
structure factor and uk is a summation index of a 
Fourier series. Thus all we need to do is to derive the 
characteristic function for the space-group symmetry 
of interest. 

The next section presents a derivation of the general 
form of the characteristic function of the condition 
p.d.f, for the space group P2 and the Appendixes 
deal with some background material and the solution 
of an integral needed in the text. 

Derivation of the characteristic function 

We recall that the three-phase structure invariant is 
usually understood as the sum 

= ~o(h) + ~o(k) + ~ ( - h -  k), (2) 

where ~0(h) is the phase of the normalized structure 
factor E(h). On the assumption that all the atoms are 
located in general positions and that non-crystallo- 
graphic symmetry is absent, 

N/g g 
E(h)=  ~ nj ~ exp[2ihT(P~rj+L)]  

j = l  s= l  

- A(h)+ iB(h). (3) 

In this equation, g is the number of equivalent general 
positions in the unit cell, N is the number of atoms 
in the cell, nj is the normalized scattering factor of 
the j th atom, h is the diffraction vector, P and t are 
the rotation and translation parts of the sth space- 
group operation respectively and rj is the position 
vector of the jth atom in the reference asymmetric 
unit. We shall also abbreviate all the quantities 
depending on h, k and - h - k  by appending to 
them the subscripts 1, 2 and 3, e.g. A(h), A(k) and 
A ( - h - k )  will be written as A~, A2 and m 3. The 
general expression for the characteristic function of 
the three-phase invariant is given by 

C(031'"""'  036)--(exp I i  ~k=l (032k-lak+032kBk)]l 

( 4 )  

(Shmueli et al., 1989a, b) and the components of the 
normalized structure factor for the space group P2 
can be written as 

N/2 
Ak = 2 Y~ n~ cos 0jk cos tO~k, (5) 

j = l  

N/2 
B k = 2 Y~ nj c o s  Ojk sin Ojk, (6) 

j = l  

where O~k = 2~r(hkXj + lkZj) and 6jk = 2~rkkyj and h, k, 1 
and x, y, z are components of h and r respectively 
(International Tables for X-ray Crystallography, 1965). 

The constraints 
g g 

0jk=0 and Y~ Ojk = O 
k=l  k = l  

follow from the invariance condition. If we substitute 
(5) and (6) into (4) and make use of the assumption 
of independent atomic contributions, we can rewrite 
(4) as 

N/2 
C ( 0 3 1 , . . - ,  0 3 6 ) =  1-I C j ( 0 3 1 , ' " ,  036) ( 7 )  

) = I 

where 

G ( 0 3 , ,  • • - ,  03~) 

= exp 2inj ~ cos Ojk(032k-~ COS O~k 
k=l  

-}-O)2k s i n  ~lljk);lO, d,b ( 8 )  

: ( e x p [ i  ~ ZjkCOSOjkCOS(Ojk--Ak)]l (9' 
k= ! O.qJ 

where Ajk = 2n;(03_~k-, + 032k) '/2 and ak = 
t a n  -~ (032k/032k-i) .  We first perform the average over 
6 by making use of the relationship 

exp [i(Ajk cos 0jk) cos (0jk -- ak)] 

= ~ iqJq(AjkCOSOja)eXp[iq(thjk--Ak)] (10) 
q~--oo 

[cf. Gradshteyn & Ryzhik, 1980, equation 8.511(4)]. 
If we substitute the right-hand side of (10) in (9) and 
replace ~Pja by - 6 j ~ -  6j2, we obtain 

G ( 0 3 1 , . " - ,  0 9 6 ) =  E E iq+r+STqrsIqrs 
q=--oo r=--oo .s=--oo (9' 

(11) 

a s  

Cj(( .Ol ,  . . . , 0,)6) = ~-~ i 3q  exp (-iqA) 
q~--oo 

(14) 

where 

Tqr s : Jq( Gj l )Jr (  Gj2)Js(  Gj3) 

xexp[-i(qA,+rA2+sA3)],  (12) 

with Gjk = Ajk COS 0~k and 

lq,~=(1/4¢r2) ~ i exp[ i (q-s)O,]  
--77 --'It 

x exp [ i ( r -  s)q,2] d~b~ dO2 

= 8qs3,.~. (13) 

where 6 is the Kronecker delta. Equation (1 1), taking 
(12) and (13) into account, can therefore be rewritten 
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where A = At + A2+ A3. It is readily shown, following 
the analysis of Shmueli et al. (1989a, b), that for 
Bessel functions of low orders and small values of to 
(14) leads to the Cochran approximation, which is 
based on the central limit theorem. A rigorous averag- 
ing over 0 can be performed by replacing 0i3 in (14) 
with - 0 ~ - 0 j 2  and making use of one of the forms 
of the Neumann summation theorem for Bessel func- 
tions (Watson, 1922; Gradshteyn & Ryzhik, 1980). 
However, we can exploit the symmetry inherent in 
the problem by observing that the three 0s are linked 
by the requirement that their sum must be zero. This 
allows us to introduce a Fourier representation of the 
periodic Dirac delta function as 

62,,(8, + 82 + 83) = (1/2¢r) 
t20 

Y~ exp [is(O, + 02+ 03)] 
s = - o o  

(15) 

(e.g. Bremermann, 1985) and, consequently, re- 
express the average on the fight-hand side of (14) as 

=(1/4~2) i S i 62,,(0,+0z+03) 
--'rr --7't" --'tr 

3 

x I-I Jq(Ajk cos Ok) d0, d02 d03 
k = i  

= E 1/2zr) Jq(Ajk cos Ok) 
s = - - o o  k = !  - ~ r  

x exp (isOk) dOk] (16) 

s = - O O  k = l  0 

(17) 

The atomic characteristic function for this space 
group therefore becomes 

Cj( ( ,Ol , . . . ,O)6)  = ~--" i3qexp(-iqA)Kq, j, (18)  
q = - o o  

where the summation Kq,j, restricted to non-negative 
values of s, is given by 

k = l  0 

+2 E (1/rr) 4(Ajk cos Ok) 
s = ,  k = ,  0 

x cos (sOk) dOk]. (19) 

q Note for further reference that K_q,j -- ( -1 )  Kq, j and 
that the change of the sign of s in the integral in (19) 
does not affect its value. 

The formal expression for the required Fourier 
coefficient is now obtained by replacing t% in (7), 
(18) and (19) with fraq, where a is the reciprocal of 
the maximum value of IEI. For example, Ajk in (19) 
then becomes 27ranj(u2k_,+U2k)~/2. We recall in 
Appendix A the general structure of the Fourier rep- 
resentation of the conditional p.d.f, of the three-phase 
invariant and show that the conditional p.d.f.s for the 
space groups P1 and P2 differ only in the functional 
form of the real composition- and symmetry-depen- 
dent factor Kq, j. 

The real and imaginary parts of the atomic charac- 
teristic function can be obtained as follows. Equation 
(18) can be decomposed as 

where 

Rj = ½( Cj + C*) 

Cj= Rj + iI;, (20) 

oo 

=~ Y~ [i -q e x p ( - i q A ) + i  q exp(iqA)]Kq.j 
q = - - o o  

=Ko, j+ ~ cos {q[(Tr/2)+ A]}Kq, j[l + ( -1 )  q] 
q = l  

= K 0 d + 2  ~ ( -1)  q cos (2qA)K2q.j, 
q = ,  

(21) 

(22) 

since the sum of a ( q , - q )  pair in (21) must vanish 
if q is odd. We further have 

Ij=(1/2i)(Cj-C*) 

=(1 /2 i )  E [ i-q exp(-iqA) -iq exp(iqA)]KqJ 
q = - O o  

co 

= -  E sin {q [ ( r r / 2 )+A]}Kq#[1 - ( -1 )  q] 
p = l  

(23) 

t:X3 

=2 ~ ( -1 )qcos [ (2q-1 )A]K2q_ ,d  (24) 
q = i  

since the sum of a (q, - q )  pair in (23) must vanish 
if q is even. 

As shown in Appendix B, the integral in (19) can 
be represented in terms of Bessel functions, 

I = (1/~r) i Jq(Ajk cos Ok) COS (SOk) dOk 
0 

=l,q+s ,2t l,q ,2t l q+s=2n  25, 
[0 ,  q+s = 2 n +  1 

where n is any integer. It follows that only Bessel 
functions of integer order are required for this calcu- 
lation. The symmetry of this integral with respect to 
the interchange of the q and s indices is also discussed 
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in Appendix B. If we define 

J(q+s)/2(Ajk/2)J(q_~/2(Ajk/2) =- T~  (26) 

the relation 

k Tsq for q - s = 4 n  
Tq~= -T~% for q - s = 4 n - 2  (27) 

obtained from that discussion may also be useful in 
attempts at reducing the extent of the computing effort 
needed. If we abbreviate the product appearing in 
(17) by 

3 

i-] [ ( 1 / I7") S Jq (ajk COS Ok ) COS (S0k) d Ok ] 
k = !  0 

3 

: I-I T~.~ =- Wq,,, (28) 
k = !  

the forms of Kq, j required by (22) and (24) can be 
obtained explicitly. Since q and s must have the same 
parity, the composition- and symmetry-dependent 
functions for the real part Rj are 

Ko, : Wo : Wo,o+2 Wo, , (291 
$ : - - o 0  s : l  

3 

= i-[ J2o(Ajk/2) 
k = l  

cx2 

+2 ~] f i  J;(Ajk/2)J_s(Ajk/2) (30) 
s = l  k = l  

3 

= I-I j2(ajk /2)  
k = l  

oo 3 

+2 E ( -1)  ~ ]-I j2(Ajk/2)  (31) 
s = l  k = l  

and 

K 2 q ,  j = ~ W2q, s 
.~= -oo 

oo 

= W2q,o+2 E Wzq,2~ (32) 
.s=l 

= W2q,O + 2 W2q,2q + 2 Y ( W2q,2 s -~- W2s,2 q ) (33) 
s<q 

3 3 
= 1"] j2q(Ajk/2)+2 1-I J2q(Ajk/2)Jo(Ajk/2) 

k = l  k = i  

+2 Y OR, (34/ 
s<q 

where 

3 

QR =2 I-I Jq+s Jq-, , q - s = 2 n  
k = l  

and 

QR =0,  q - s = 2 n + l .  

(35) 

and that entering the imaginary part lj is 
03 

K2q-,.j = Z W2q-,.2~-, 
.~-= -03 

= 2 W2q-,,2q-, + 2 E ( W2q--I,2.s-I + W2.s-l,2q--I) 
s<q 

(36) 

3 

=2 1-] J2,~_l(Ajk/2)Jo(Ajk/2)+2 ~, Qt, (37) 
k = l  s<q 

where 

Qt =2 1-[ Jq+,-, Jq-s , q - s = Z n  
k = l  (38) 

and 

Qt =0, q - s = 2 n + l .  

The computation is then running over one eighth of 
the (q, s) index plane, where only terms with q + s = 
2n need be considered, i.e. only about one sixteenth 
of the possible combinations of the (q, s) indices has 
to be used. 

The foregoing development leads to computable 
expressions, the programming of which is in progress. 
The decomposition of the conditional p.d.f, into par- 
tial summations follows a similar route to that 
described elsewhere (Shmueli et al., 1989a) and is 
aided by the analogous structure of the equations (of. 
Appendix A). It is interesting to note that the func- 
tional forms of some partial summations indicate that 
the discrepancy between the exact conditional p.d.f.s 
for P2 and the corresponding ones resulting from the 
central limit theorem is likely to be smaller than that 
observed for the space group P1. However, conclu- 
sive statements can be made only after the computa- 
tions are completed. 

This work was supported in part by research grants 
from the United States-Israel Binational Science 
Foundation (BSF) and the Israel Academy of 
Sciences. 

APPENDIX A 

The purpose of this Appendix is to recall the general 
form of the conditional p.d.f, for the three-phase 
invariant and compare the general expressions for 
the space groups P1 (Shmueli et al., 1989a) and P2 
(this paper). The p.d.f, of the three-phase invariant, 
q~, as defined by (2) in the text, conditioned on the 
magnitudes of three normalized structure factors, 
crystallographic symmetry and atomic composition, 
is given by 

p ( ~  E I , E 2 ,  E 3 , . . . t = K E  C u ( A ) / u ( ~ ) , A ) ,  ( A 1 )  
[] 
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where K is a normalization factor; u r =  
(ul u2 u3 u4 u5 u6) is the vector of the Fourier summa- 
tion indices for the hexavariate joint p.d.f., from 
which the conditional p.d.f, is derived; Cu(A) is the 
Fourier coefficient corresponding to a certain sextet 
of summation indices and expressible as 

N / g  

C,,(A)= 1-[ C,,.j(A) (A2) 
j = l  

where N is the number of atoms in the unit cell and 
g is 1 or 2 for P1 or P2 respectively; the atomic 
contribution to the Fourier coefficient is 

oo 

Cj(A)= E i-q exp(-iqA)Kq.j (A3) 
q=--oO 

and the integrated phase factor Z . ( 4 ,  A) is given by 

oo 

Z . ( q ) , a ) =  Y iPexp[ ip(~-a)]Gp.  (a4)  
p =  - c o  

It is shown by Shmueli et al. (1989a) that the qtmntity 
Gp is given by 

3 

Gp = [I J,(Ekak), (a5)  
k = !  

where 

ak = "n'a(U2k-, + uZa) '/2 (A6) 

and is therefore independent of the atomic composi- 
tion and crystal symmetry. The above-quoted refer- 
ence along with the text of this paper show that the 
only difference between the structures of the condi- 
tional p.d.f.s for the space groups PI  and P2 lies in 
the quantity Kq, j, which is given by 

3 

Kq.j= ~ Jq(njak) (A7) 
k = l  

for the space group P1 (Shmueli et al., 1989a) and by 

Kq.j= ~ h {(1/Tr) iJq[2nj~kCOS(~k)] 
s = - - o o  k = l  0 

x cos (SCkk) d4a} (A8) 

for the space group P2 (see text). 
The phase factor A = A 1 + A E + A 3 ,  with Ak= 

t a n  -1  (U2k/U2k_l) has played a very important role in 
the decomposition of the conditional p.d.f, into par- 
tial summations (Shmueli et al., 1989a, b). Appendix 
A of the latter reference describes in detail the pro- 
cedures of restricting the Fourier summations to posi- 
tive indices and exploiting the intra-pair and inter- 
pair symmetries in order to avoid repetitive computa- 
tions. In fact, most arguments put forward in that 
Appendix are applicable to the numerical study of 
the conditional p.d.f, for the three-phase invariant for 
space group P2, which is now in progress. 

APPENDIX B 

We now deal with the solution of the definite integral 

i Jq(Ajk cos Ok) cos (sOk) dOk, 
0 

where q and s are integers, which first appears in 
(17) in the text. The integral can be written in the form 

Jq[2a cos (x)] cos (sx) dx 
0 

r r / 2  

= ~ Jq[2a cos (x)] cos (sx) dx 
0 

+ i Jq[2a cos (x)] cos (sx) dx, (B1) 
r r / 2  

where 
~ ' / 2  

Jq(2a cos x) cos (sx) dx --- K 
0 

=(Tr/s)J(q+~)/2(a)J(q__s)/2(a) (B2) 

is a known definite integral [Gradshteyn & Ryzhik, 
1980; equation 6.681(1)]. The second integral on the 
right-hand side of (B 1) can be reduced to a tractable 
form by introducing the change of variable y = rr - x .  
Hence x = r r - y ,  dx = - d y ,  the integration limits on 
x, (rr/2) to 7r, become (rr /2)  to 0 on y, 

cos (sx) = cos [ s ( r r - y ) ]  

= cos  (sTr) cos  (sy) 

= ( - 1 )  ~ cos  ( sy )  

Jq(2a cos x ) =  Jq[2a cos (r  r - y ) ]  

= (-1)Ujq[2a cos (y)] 

and (B 1) becomes 

Jq(2a cos x) cos (sx) dx 
0 

0 

= K - ( - 1 )  q+~ J Jq(2a cos x) cos (sx) dx 
~r/2 

= [ l + ( - 1 ) q + ~ ] K  

= { OJ(q+s)/2( a )Y(q-s)/2( a ) for q + s even 
(B3) 

for q + s odd. 

Of course, the orders of the Bessel functions appear- 
ing in (B3) must be integers. This product of Bessel 
functions is symmetric with respect to the interchange 
of the indices q and s if q - s  = 4n and is antisym- 
metric with respect to such an interchange if q - s  = 
4 n + 2 .  This further reduces the computing time 
required for the valuation of the double summations 
in (22) and (24). 
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Abstract 

Pendell6sung effects in magnetic neutron scattering 
by thin (thickness of the order of the extinction 
length) crystals of weak ferromagnets FeBO3 and 
a-Fe203 were investigated. Dynamical oscillations in 
the scattering intensity dependences on the crystal's 
effective thickness, temperature and magnetic field 
orientation have been found. The influence of 
irregularities in the magnetic structure related to 
domains, a magnetic phase transition and mag- 
netoelastic oscillations on the Pendell6sung oscilla- 
tion amplitude has been established. The oscillation 
amplitude and the scattering intensity dependence on 
the structure-factor magnitude have been used to 
obtain information on small deformations from per- 
fection of the crystalline and magnetic structures, 
which are difficult to detect by other methods. 

Introduction 

In the case of diffraction by a perfect crystal, the wave 
field is determined by the dynamical interaction 
between the transmitted and scattered waves 
(Zachariasen, 1945; Laue, 1960). This results in a 
number of dynamical effects, one of which is the 
Pendell6sung effect, i.e. an oscillating dependence of 
the scattered intensity in Laue geometry on the ratio 
of the crystal thickness to the extinction length. 
The dynamical oscillations were studied in detail in 
X-ray scattering (Kato & Lang, 1959; Utemisov, 
Somenkova, Somenkov & Shilstein, 1980) and in 
nuclear neutron scattering (Sippel, Kleinstiick & 
Schulze, 1965; Shull, 1968; Somenkov, Shilstein, 
Belova & Utemisov, 1978). The theoretical aspects of 
neutron scattering by perfect magnetically ordered 
crystals were treated in a number of papers (Stassis 
& Oberteuffer, 1974; Sivardi~re, 1975; Gukasov & 
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Ruban, 1975; Schmidt & Deimel, 1976; Belyakov & 
Bokun, 1975, 1976; Mendiratta & Blume, 1976; Bary- 
shevskii, 1976; Guigay & Schlenker, 1978), However, 
Pendell6sung oscillations were observed in the mag- 
netic neutron scattering case only recently (Baruchel, 
Guigay, Mazure-Espejo, Schlenker & Schweizer, 
1982; Kvardakov, Somenkov & Shilstein, 1988; 
Zelepukhin, Kvardakov, Somenkov & Shilstein, 1989) 
owing to the small number of perfect magnetically 
ordered crystals. 

Baruchel et al. (1982) used the anisotropy of the 
defect distribution in incompletely perfect yttrium 
iron garnet crystals. The analyzed reflection had an 
orientation of the scattering vector such that the effect 
of defects on the diffraction was minimal. As a result, 
a peak corresponding to one of the dynamical oscilla- 
tions was found in the dependence of the mixed 
(nuclear-magnetic) scattering intensity of polarized 
neutrons on the wavelength. 

Kvardakov, Somenkov & Shilstein (1988) and 
Zelepukhin, Kvardakov, Somenkov & Shilstein 
(1989) reported on the Pendell6sung-effect observa- 
tion in pure magnetic neutron scattering by using the 
inclination method. The method was proposed earlier 
by Somenkov et al. (1978) for the case of nuclear 
neutron scattering and later it was used for Pendel- 
16sung-effect investigation in X-ray (Utemisov et al., 
1980) and synchrotron-radiation (Belova & Kaban- 
nik, 1985) scattering, for precise determination of 
structure factors (Saka & Kato, 1986) and for the 
study of extinction parameters connected with micro- 
defects (Voronkov, Piskunov, Chukhovskii & Mak- 
simov, 1987). 

In works of Kvardakov, Somenkov & Shilstein 
(1988) and Zelepukhin et al. (1989), thin (of the order 
of the extinction length) crystals of weak ferromag- 
nets iron borate FeBO3 and hematite c~-Fe203 were 
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